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GENERAL NOTES

STOP, CHOMP, AND ROLL: ROTATIONAL FEEDING BEHAVIOR
IN MARINE SCULPINS

CALLIE H CRAWFORD, SHUBHAM YADAV, JONATHAN M HUIE, AND EMILY A KANE

ABSTRACT—In summer 2022 at the University of
Washington Friday Harbor Laboratories on San Juan
Island, Washington, we recorded 4 species of marine
sculpin, Oligocottus maculosus, Leptocottus armatus,

Clinocottus globiceps, and Clinocottus embryum, per-
forming rotational feeding behavior in which the fish
rapidly rotates about the body axis in order to break
off a manageable piece of a prey item. These record-
ings were made while filming prey-capture trials as
part of another study. Although these behaviors have
been observed in distantly related groups of primarily
anguilliform fishes, these are the first filmed recordings
of stout-bodied sculpin species performing rotational
feeding behaviors consistently in a laboratory setting.
The species observed in the study primarily prey upon
small marine invertebrates and fish larvae that they
bite or scrape off the substrate, or suction feed from the
water column near the substrate. When offered large
prey items, they are unable to obtain the food in their
ordinary manner and instead bite off small pieces or
perform the rotational behavior to assist in tearing off
a manageable piece.

Key words: biting, Cottidae, feeding system, rota-
tional, sculpin, spinning

Fishes have evolved many approaches to feed-
ing including suction feeding, ram feeding, and
biting (Mehta and Wainwright 2007; Ferry and
others 2015). Whereas suction is an indirect
method of prey capture that relies on a rapid drop
in intraoral pressure to pull prey into the mouth,
biting involves direct contact of the jaws with the
prey. Ram feeding relies on swim speed to over-
run prey and can be performed alone or in combi-
nation with the other modes (Ferry and others
2015). Within these approaches are specializations,
and one such form of specialized biting is rota-
tional feeding. In rotational feeding, also referred
to as spin feeding or twist feeding, the fish or other
organism bites onto a prey item too large to ingest
and uses a rapid spinning or rotating movement
to tear off a smaller-sized piece that is more easily
ingested (Taylor 1987).

The ability to reduce a prey item to a more
manageable size is especially helpful in organ-
isms without other means of manipulating prey
prior to mastication. Rotational feeding has been

observed in several fish taxonomic groups includ-
ing: elasmobranchs (Springer 1961; Motta and
Huber 2012), eels (Helfman and Clark 1986;
Miller 1989; Helfman and Winkelman 1991;
Mehta and Wainwright 2007; Moretto and others
2022), sculpins (Yoshiyama and others 1996),
gobies (Angradi 2018), and other anguilliform
fishes including stichaeids and pholids (Clark
and others 2016). Some clades of aquatic and
terrestrial tetrapods, including crocodylians
(Fish and others 2007) and caecilians (Measey
and Herrel 2006), also use rotational feeding.
Social rotational feeding has even been observed
in a species of icefish, Pagothenia borchgrevinki
(Janssen and others 1992). In these bouts of social
rotational feeding, 1 P. borchgrevinki individual
will capture the prey and attract 1 or 2 conspecifics,
which promotes synchronized twisting.

In the summer of 2022, we recorded rotational
feeding in 4 species of marine sculpin: (1) Tide-
pool Sculpin (Oligocottus maculosus); (2) Staghorn
Sculpin (Leptocottus armatus); (3) Mosshead Scul-
pin (Clinocottus globiceps); and (4) Calico Sculpin
(Clinocottus embryum). Another species of inter-
tidal sculpin, the Saddleback Sculpin (Oligocottus
rimensis) was observed completing the rotational
feeding behavior singly and in groups in the
holding tank; however, we did not film this
behavior. These opportunistic findings were
observed during data collection for comparative
studies of feeding kinematics in sculpins. All
data presented here were from lab observa-
tions. Other species were held and/or filmed
feeding in the lab, including 3 species of Arte-
dius (A. lateralis, A. fenestralis, and A. harringtoni),
Oligocottus snyderi, Rhamphocottus richardsoni,
and Blepsias cirrhosus. None of these species
exhibited rotational feeding behavior when
offered larger pieces of prey.

Fishes were collected through a combination
of tidepooling, dip netting, beach seining, and
tidepool bailing alongside the Friday Harbor
Laboratory Fish Functional Morphology course
participants in the San Juan Islands, Washington,
USA. Oligocottus maculosus were collected at
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Deadman Bay (UTM: Zone 10, 48.514240,
–123.144534) and Cattle Point (UTM: Zone 10,
48.452356, –122.962320) on San Juan Island. Lepto-
cottus armatus were collected via seine at Jackson
Beach (UTM: Zone 10, 48.519605, –123.010148) and
Eagle Cove (UTM: Zone 10, 48.461562, –123.032536)
on San Juan Island. Clinocottus globicepswere col-
lected at Cattle Point. Clinocottus embryum were
collected at Iceberg Point (UTM: Zone 10, 48.419880,
–122.892899) on Lopez Island. Fish were housed
in flow-through sea tables and separated into
labeled flow-through containers during filming to
keep track of individuals across multiple days.
Fish were left to acclimate in the filming tank until
they appeared calm and willing to feed. The film-
ing setup used 2 synchronized Edgertronic cameras
(SC1, Sanstreak Corp., Campbell, CA) mounted on
tripods, 1 camera mounted for a dorsal view and
the other setup for a lateral view, to allow for calcu-
lating 3D kinematics of feeding and swimming
behaviors. In trials where rotational feeding was
observed, the individual was offered a large piece
of thawed shrimp held in place with long forceps.
Videos were recorded at 500 fps for L. armatus
and O. maculosus and 700 fps for C. embryum and
C. globiceps. All animal use and care procedures
and guidelines follow University of Washington
IACUC protocol #4238-18.

The species recorded in the study, and other
similarly sized cottid fishes, generally feed on
small benthic invertebrates and larval fishes, often
doing so on or near the substrate and sometimes
feeding on suspended prey items (Norton 1991;
Buser and others 2019).Oligocottus maculosus feeds
mainly on marine invertebrates including isopods,
amphipods, snails, and worms (Norton 1991; Buser
and others 2019). Leptocottus armatus is known to
consume salmon fry (Mace 1983) in addition to
benthic invertebrates including amphipods, poly-
chaetes, mysids, and isopods (Norton 1995; Visin-
tainer and others 2006; Buser and others 2019).
Clinocottus embryum is also primarily a benthic
invertivore (Miller 1980; Buser and others 2019)
and has even been observed to be cannibalistic
in a laboratory setting (Pfister 1999). Clinocottus
globiceps specializes in anemone feeding with its
diet also including algae and small pelagic inver-
tebrates (Yoshiyama and others 1996; Buser and
others 2019).

Initial expectations during feeding trials with
large prey items were that the sculpins would
bite off small pieces of the shrimp as previously

observed while feeding fish in the holding tanks.
Although many individuals did take small bites
from the larger piece, some used the spinning
behavior to shear off small enough pieces to
ingest (Fig. 1). When performing the rotational
behavior, fish rotated along the long axis and
fins were kept flush to the body at the beginning
of all rotational bouts. Rotations were never the
first attempt to obtain food. Instead, the sculpins
would bite first, unsuccessfully, and then return
to attempt to remove a manageable piece of food
through rotational feeding. In some trials the fish
would take multiple bites at the same site, seem-
ingly to get a good grasp on the prey item before
beginning to rotate.

The data presented here represent 8 rotational
feeding trials observed across the 4 species (Table 1).
The specimens filmed ranged in size from 4.2 to

FIGURE 1. Lateral (left) and dorsal (right) views of
1 full rotation of Oligocottus maculosus; rotation is the
2nd full rotation from a sequence of 9 continuous
rotations. Scale bar¼ 10 mm.
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10.6 cm in total length. Owing to the complex
orientation of fish and limited number of cam-
eras, 3D kinematic analyses of spins were not pos-
sible and the descriptions we present are limited
to basic qualitative and quantitative analyses.
Angular speed for each spin was calculated by
determining the elapsed time for the fish to com-
plete a 360� rotation.

Across species, we observed rotations to the
left and to the right, but owing to the small sample
size it was unclear whether individuals had direc-
tional preferences or responded to some aspect
of prey presentation. Another variation observed
among species was the amount of axial bending
during rotations. Leptocottus armatus showed the
least bending along the midline andO. maculosus

exhibited the most sinusoidal axial bending, with
bending in C. embryum appearing to be between
the 2 previous species but more similar to O. mac-

ulosus in the amount of bending. Clinocottus globi-
ceps showed the most diversity in movements,
varying axial bending with angular velocity and
would be of particular interest in further work
using an updated camera arrangement to capture
movement more accurately.

The number of rotations per trial varied within
and between species. Overall, L. armatus had the
smallest number of rotations per trial, ranging
from 1 to 7. In contrast, C. embryum performed
9 and 10 rotations in each trial, whereas C. globiceps
performed 4 rotations in 1 trial and 11 in the
other 2 trials, and O. maculosus performed 8
and 14 rotations. In trials for O. maculosus and C.

embryum, the fish splayed their pectoral fins out to
the side during the last rotation, which caused a
rapid decrease in rotational speed (Fig. 2). Leptocottus
armatus did not splay pectoral fins out at the end

of the rotations. Instead, these individuals turned
their body away from the prey item, leading with
the head to remove their bite of food.

Species varied in average angular speed, with
the fastest rotations seen in O. maculosus (mean¼
69.91 ms rotation�1, SD¼12.87). Intermediate
speeds occurred in L. armatus (mean¼ 101.71 ms
rotation�1, SD¼ 22.45) and C. embryum (mean¼
103.16 ms rotation�1, SD¼ 28.30). The slowest
average angular speed was seen in C. globiceps

(mean¼ 128.35 ms rotation�1, SD¼ 33.79). These
averages do not include the final rotation when
fins were splayed out, slowing the rotation in
C. embryum or O. maculosus. C. globiceps exhibited
the greatest range in angular speed, with the fastest
rotations reaching 71.43 ms and the slowest rota-
tions nearing 195 ms. Axial bending in C. globiceps
varied at different rotational speeds; at the faster
rotations, the body was kept straighter, more rigid,
whereas the slower rotations included pauses
mid-rotation and increased axial bending.

These observations show that rotational feeding
behaviors are readily employed in the lab by mul-
tiple sculpin species when offered prey items
larger than their typical prey types. This affirms
that rotational feeding is not limited to primarily
elongate fishes and suggests that rotational feed-
ing might be an important feeding mode in scul-
pins that has been largely overlooked and is more
widespread than initially known. However, com-
parisons of biting versus rotational feeding pro-
portions were not possible with the current data
set. Further investigation is necessary with an
updated filming scheme and a broader recording
approach. Using at least 4 views would allow for a
better comparison of movement during rotational
feeding, including undulation amplitude and

TABLE 1. Summary of individuals used in this study.

Species

Individual
identification

number

Total
length
(cm)

Number
of trials
analyzed

Number of
rotations

Average
angular speed 6 SD

(ms rotation-1) Range (ms)

Leptocottus armatus Larm08 10.6 1 7 90.57 6 16.36 76.00–124.00
Larm09 10.1 3 2.5 114.00 6 14.14 104.00–124.00

4 104.00 6 23.04 88.00–138.00
1 146.00 —

Oligocottus maculosus Omac03 9.4 1 8 78.50 6 10.73 64.00–92.00
Omac05 7.4 1 14 65.00 6 11.58 54.00–92.00

Clinocottus globiceps Cglob03 4.2 3 11 131.30 6 39.35 75.71–194.29
11 140.52 6 15.92 120.00–168.57
4 86.79 6 25.11 71.43–124.29

Clinocottus embryum Cemb01 7 2 9 120.00 6 30.59 85.71–182.86
10 88.00 6 15.20 51.43–104.29
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changes in rotation along the body. Standardization
of prey placement using a clamp instead of hand-
held forceps will remove the influence of hand
movements and should support a more standard-
ized approach for the fish towards the prey.

Oligocottus maculosus, L. armatus, C. embryum,
C. globiceps, and O. rimensis were the only species
observed completing rotational feeding in this
study. Interestingly, Oligocottus and Clinocottus
are closely related intertidal genera, whereas
L. armatus is a more distant subtidal species (Buser
and others 2019). It is unclear whether this behavior
is a factor of habitat of origin, life stage, or other
traits, as not all species performed rotational feed-
ing. An increase in the number of species studied,
a range of individual body size, and adjustments
to the filming scheme will greatly increase our
understanding of this behavior. Additionally,
we expect that in specific conditions and

motivations, other species may also be capable

of this behavior, and it may be more widespread

across aquatic vertebrates than previously

reported.
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FIGURE 2. Representative images showing pectoral fin use during a final roll. (A) Oligocottus maculosus
before with their pectoral fins flush against the body and (B) while splaying pectoral fins, slowing rotations;
and (C–D) Leptocottus armatus keeping fins flush against body and ending rotation by turning away from food
parcel. Scale bar¼ 10 mm. Arrows indicate pectoral fin placement.
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